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The stochastic Feller neuronal model is studied, and estimators of the model input parameters, depending on
the firing regime of the process, are derived. Closed expressions for the first two moments of functionals of the
first-passage time �FTP� through a constant boundary in the suprathreshold regime are derived, which are used
to calculate moment estimators. In the subthreshold regime, the exponentiality of the FTP is utilized to
characterize the input parameters. The methods are illustrated on simulated data. Finally, approximations of the
first-passage-time moments are suggested, and biological interpretations and comparisons of the parameters in
the Feller and the Ornstein-Uhlenbeck models are discussed.
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I. INTRODUCTION

The stochastic leaky integrate-and-fire �LIF� neuronal
models are common theoretical tools for studying properties
of real neuronal systems. They represent a compromise be-
tween a similarity to real neurons and mathematical tracta-
bility �see, e.g., �1–4��. In these models, a neuron is charac-
terized by a single stochastic differential equation describing
the evolution of neuronal membrane potential in dependency
on time. Due to the simplicity of these models, some of their
features are qualitatively questionable, the most critical ones
being unlimited membrane potential fluctuations and state-
independent changes of the voltage. Modifications of the ba-
sic LIF model have been introduced, in which these unfavor-
able properties are removed �e.g., �5–8��.

The deterministic LIF model is and has been very popular
in theoretical neuroscience, with roots in the beginning of the
previous century �9�, and it has been compared to more
elaborated on models �e.g., �10,11��. The results suggest that
despite drastic simplifications, the model is relatively reliable
in mimicking the more complex ones. The simplest way to
construct a stochastic LIF model is to take the deterministic
LIF model and add a suitable type of noise, usually Gaussian
white noise, but other forms are also possible. Adding Gauss-
ian white noise converts the deterministic LIF model into the
Ornstein-Uhlenbeck �OU� model. If Poissonian noise is
added we end up with Stein’s model or modifications of it
�7,12�. In this paper we replace the additive Gaussian white
noise by a multiplicative Gaussian white noise that makes
neuronal response to input state dependent. This step ensures
that membrane potential fluctuations are bounded.

Another way to construct a stochastic model with Gauss-
ian white noise �either additive or multiplicative� is to apply
a diffusion approximation method, starting from a model
with Poissonian noise in which the input rates of synaptic

bombardment are assumed to be high and the contributions
of individual postsynaptic potentials are assumed very small.
Whereas the diffusion approximation of the basic LIF model
results in the OU process, for the LIF model with state-
dependent jumps, the range of limiting processes is large
�6,8�. The OU process retains the criticizable unlimited
membrane potential fluctuations, whereas the diffusion vari-
ants of the LIF models with variable synaptic conductance
effects caused by introduction of reversal �also called equi-
librium� potentials can have either a bounded or unbounded
state space �for details see �6��. All these models have been
deeply investigated in recent years �13–19�.

Firing is not an intrinsic property of the LIF models or
their modifications, and a firing threshold has to be imposed.
An action potential �spike� is produced when the membrane
voltage reaches the voltage threshold and corresponds to the
FTP for the associated stochastic process describing the volt-
age. In the moment of spike generation, the voltage is instan-
taneously reset to its initial value. Time intervals between
action potentials are identified with experimentally observ-
able interspike intervals �ISIs�. The importance of the ISIs
follows from the generally accepted hypothesis that the in-
formation transferred within the nervous system is encoded
by the timing of the action potentials. The diffusion variants
of the LIF models are popular because the first-passage-time
problem is easier to solve for the diffusion process than for
its counterpart with discontinuous trajectories.

Studies devoted to the comparison of the leaky integrate-
and-fire neuronal models with experimental data are rare.
Some references are �20–26�. At present, we are not aware of
any attempt to identify parameters of a diffusion model with
restricted space to ISI data. The aim of the present contribu-
tion is to derive methods of parameter estimation based on
ISI data in the diffusion variant of the LIF model with in-
hibitory reversal potential. This model is usually called the
Feller model. The choice of considering only one reversal
potential simplifies the treatment and it has been shown �27�
that the inhibitory reversal potential probably plays a more
important role than the excitatory one.

Similarly to the OU model, the parameters of the Feller
model can be divided into two categories: the input param-
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eters depend on the activity of the neurons in the networks,
and the intrinsic parameters characterize the neuron itself,
independently of its activity. In fact, the input parameters are
a combination of the input excitation and inhibition rates and
the intrinsic parameters. This follows from the studies on
diffusion models with reversal potentials �6,17,28,29� and it
is explained in Sec. V of this paper. Only the estimation of
the input parameters is considered, assuming the intrinsic
parameters are known and fixed.

The Feller process has many applications apart from
neuronal modeling. In 1951 Feller �30� proposed it as a
model for population growth, from where the neuronal
community adapted its name. Cox, Ingersoll, and Ross �31�
proposed it in 1985 to model short term interest rates, and
it has been and still is widely studied in the mathematical
finance literature under the name of the CIR model. Pedersen
�32� used it to model nitrous oxide emission from soil.
In survival analysis, Aalen and Gjessing �33� applied the
process as a model for the individual hazard rate. Recently
Doering and co-workers studied numerical aspects of the
process �34�.

Closed expressions for the first two moments of function-
als of the FTP through a constant boundary are derived and
used to construct moment estimators, valid in a subset of the
parameter space. The method is illustrated on simulated data.
The first two moments of the FTP and approximations are
given. Finally, it is shown that the way the diffusion model is
derived from the LIF model with Poissonian noise influences
the interpretation of its parameters. The paper represents a
parallel study to that on the OU neuronal model �26�.

II. THE MODEL AND ITS PROPERTIES

The changes in the membrane potential between
two consecutive neuronal firings are represented by a
stochastic process Yt indexed by the time t. The reference
level for the membrane potential is taken to be the resting
potential. The initial voltage �the reset value following a
spike� is assumed to be equal to the resting potential, and
set to zero, Y0=y0=0. An action potential is produced
when the membrane voltage Yt exceeds a voltage threshold
for the first time, for simplicity assumed to be equal
to a constant Sy �0. Formally, the interspike interval
�ISI� is identified with the FTP of the
threshold,

T = inf�t � 0:Yt � Sy� . �1�

It follows from the model assumptions that for time-
homogeneous input containing either a Poissonian or white
noise only, the interspike intervals form a renewal process
and the initial time can always be identified with zero.
Here we consider the white noise input and Yt is a diffusion
process.

A scalar diffusion process X= �Xt ; t�0� can be described
by the stochastic differential equation

dXt = ��Xt,t�dt + ��Xt,t�dWt, �2�

where W= �Wt ; t�0� is a standard Wiener process and ��·�
and ��·� are real-valued functions of their arguments called

the infinitesimal mean and variance. The most common of
these neuronal models is the OU model given by

dYt = �−
Yt

�
+ ��dt + � dWt; Y0 = y0 = 0, �3�

see, e.g., �1–4�. The constant � characterizes the neuronal
input, ��0 reflects spontaneous voltage decay �the
membrane time constant� in the absence of input, and ��0
is the second input parameter determining the amplitude
of the noise. The diffusion term ��·� of model �3� is
state independent. The process is unbounded, which is
physiologically unrealistic. In this paper we investigate
the more realistic Feller model �30� that introduces an inhibi-
tory reversal potential that bounds the process from below,
given by

dYt = �−
Yt

�y
+ �y�dt + �y

	Yt − VI dWt; Y0 = y0 = 0,

�4�

where VI�0 is the inhibitory reversal potential. In Fig. 1 the
two processes are simulated in the absence of a threshold,
using the same realization of a white noise for comparison.
Parameters are chosen such that they have the same
asymptotic mean and variance, see below. The Feller process
�dark line� is seen never to go below the value of the reversal
potential, whereas the OU process �grey line� does. The
Feller process attains larger values more often. From Fig. 1 it
appears that if the threshold value equals S1, the interspike
intervals would be nearly equal for the two processes,
whereas for the threshold equal to S2 they would be different,
and the Feller model would spike more often. This observa-
tion is valid under the assumption that the reset does not
influence the process behavior qualitatively.

Analogously to the OU model, the parameters appearing
in �1� and �4� can be divided into two groups: parameters
characterizing the input, �y and �y, and intrinsic parameters,
�y, y0, VI, and Sy, which describe the neuron irrespectively
of the incoming signal �35�. The process �4� defines a

FIG. 1. �Color online� Realizations of Xt �membrane potential
against time, arbitrary units� for the Feller process �dark line� and
the OU process �gray line� in absence of a threshold. For compari-
son, the same realization of a white noise process was used in the
two simulations. The dashed lines are the asymptotic depolarization
��, which is equal for the two simulations, and the reversal poten-
tial VI for the Feller process, respectively. If the threshold value
equals S1, the interspike intervals would be nearly equal for the two
processes, for S2 they would be different.
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diffusion process, which can be transformed to the standard
form of the Feller process �30� by setting Xt=Yt−VI. We
obtain

dXt = �−
Xt

�
+ ��dt + �	Xt dWt; X0 = x0 = − VI, �5�

where �=�y −VI /�y, �=�y and �=�y. The interspike interval
T is now identified with the FTP of the
threshold, S=Sy −VI by process Xt. Note by the comparison
of Eqs. �3� and �5� that � in �5� has not only different
units but also a different interpretation. Whereas in �3�
it is the amplitude of noise, in �5� it is only a proportion of
the noise.

Following Feller’s classification of boundaries �see, e.g.,
�36��, the boundary 0 is entrance if 2���2, which is a rea-
sonable assumption in the neuronal context that we will as-
sume in the rest of the paper. In this case Xt lives on the
positive real axis and �5� admits a stationary distribution. In
the original parametrization the condition corresponds to
�y −VI /�y ��y

2 /2, and Yt�VI for all t.
The transition density of process �5� is a noncentral

chi-square distribution with conditional mean and
variance

E�Xt
X0 = x0� = �� + �x0 − ���e−t/�, �6�

var�Xt
X0 = x0� =
��2�2

2
�1 − e−t/��2 + x0��2�1 − e−t/��e−t/�,

�7�

see, e.g., �31�. The asymptotic stationary distribution
in the absence of a threshold is a gamma distribution with a
shape parameter 2� /�2 and scale parameter ��2 /2.
Thus, the asymptotic mean and variance is E�Xt�=�� and
var�Xt�=��2�2 /2.

Again analogously to the OU model, two distinct firing
regimes, usually called sub- and suprathreshold, can be es-
tablished for the Feller model. In the suprathreshold regime,
the asymptotic mean depolarization �� given by �6� is above
the firing threshold S and the ISIs are relatively regular �de-
terministic firing—which means that the neuron is active
also in the absence of noise�. In the subthreshold regime,
��	S, and firing is caused only by random fluctuations of
the depolarization �stochastic or Poissonian firing�. The term
“Poissonian firing” indicates that when the threshold is far
above the steady-state depolarization �� �relatively
to ��, the firing achieves characteristics of a Poisson point
process �37,38�.

The FPT problem for model �5� has not been solved and
only numerical ��39�, section VI�, �40� or simulation �41�
techniques are available.

A. Approximations of the ISI moments

Closed form expressions for the mean and variance of T
were calculated in �27,42�:

E�T� =
S − x0

�
+ �

n=1



��Sn+1 − x0

n+1�

�n + 1��
i=0

n

��� + i��2/2�

, �8�

var�T� =
2E�T�S

�
+ �

n=1



2�E�T�Sn+1

�n + 1��
i=1

n

��� + i��2/2�

− 2�2�
n=0


 �Sn+1 − x0
n+1���

j=1

n
1

j
�

�n + 1��
i=0

n

��� + i��2/2�

�9�

in the case 2���2. Define k=2� /�2, then the assumption
that 0 is entrance boundary implies k�1. Rewriting �8� and
�9� by substituting k yields

E�T� =
S − x0

�
+ ��

n=2



kn��k�

n��k + n�
�Sn − x0

n�
����n


S − x0

�
+ ��

n=2



��k�

��k + n + 1�� kS

��
�n

=
S − x0

�
−

�

k
−

S

�k + 1��
+ ����

kS
�k

exp� kS

��
��� kS

��
;k�
�10�

since S /x0�1. Here ��x ; p�=�0
x tp−1e−t dt is the incomplete

gamma function. The first term in �10� corresponds to the
mean FPT for the Wiener process with drift �, so that the
mean FPT of the Feller process is always larger. For finite k,
that is for �2�0, or in suprathreshold regime, that is for
���S, the sums are convergent. This agrees with the deter-
ministic model, where firing only occurs if ���S. In su-
prathreshold regime the convergence will be fast. A cruder
approximation yields

E�T�  ����

kS
�k

exp� kS

��
��� kS

��
;k� −

�

k
. �11�

Moreover,

var�T� = 2E�T�� S

�
+ ��

n=2



��k�

n��k + n�� kS

��
�n�

− 2�2�
n=2


 kn��k���
j=1

n−1
1

j
�

n��k + n�
�Sn − x0

n�
����n

 2E�T��E�T� +
x0

�
� − 2�2�

n=2


 ��k�
1

n
��

j=1

n−1
1

j
�

��k + n� � kS

��
�n

 2E�T��E�T� +
x0

�
� +

�S

�
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− �2���

kS
�k−1

exp� kS

��
��� kS

��
;k� , �12�

where we have used the crude approximation 1
n

�� j=1
n−1 1

j
�

1/2, which is exact for n=2 and n=3.
For comparison with the approximations of the ISI

moments in the OU model calculated in �26�, we also ap-
proximate �8� and �9� using the simpler expressions �20� and
�21� derived below when �22� is fulfilled. The Taylor expan-
sion of log�eT/�� to second order around E�eT/�� and taking
expectations yields

E�T� = �E�log eT/��  � log�E�eT/��� −
� var�eT/��
2E�eT/��2

= � log��� − x0

�� − S
�

−
�2�2�S − x0�����S + x0�/2 − x0S�

2��� − x0�2���� − S�2 + ��2���/2 − S��
. �13�

Notice that the first term corresponds to the passage time in
the deterministic model when �2=0. The mean FPT de-
creases as �2 increases. Repeating the calculation for
�log�eT/���2 yields

E�T2� = �2E��log eT/��2�  �2�log�E�eT/����2

− �log�E�eT/��� − 1�
�2var�eT/��

E�eT/��2 �14�

so that

var�T� 
�2 var�eT/��

E�eT/��2

=
�3�2�S − x0�����S + x0�/2 − x0S�

��� − x0�2���� − S�2 + ��2���/2 − S��
�15�

ignoring higher order terms.

III. ESTIMATION OF THE INPUT PARAMETERS

Estimators of the parameters of model �5� from ISI data
could be derived if the FPT distribution was known. Unfor-
tunately this is not the case, and we therefore propose esti-
mators based on moments of functionals of the FPT and on
approximations of the distribution.

In the subthreshold regime the ISIs are approximately ex-
ponentially distributed, which suggests the corresponding
maximum likelihood estimators. In the suprathreshold re-
gime, where an approximate distribution is not available, we
propose a moment estimator. It is not obvious how to deter-
mine the regime since � is unknown, but one could, e.g.,
perform an exponential distribution test. If an exponential
distribution of ISIs is rejected, the suprathreshold estimation
procedure is applied.

The data are assumed to be n observations of T:
ti , i=1, . . . ,n. The model implies that the neuronal output
forms a renewal process, so that the observations will be
independent and identically distributed.

A. Subthreshold regime

If ��	S relative to � the first-passage-time density func-
tion can be approximated by an exponential distribution
�27,37,38,43�

f�t� =
1

�
exp�− t/�� , �16�

where � is the mean, and can therefore be approximated
using �11� for large S:

� = ���2�

�2 �� ��2

2S
�2�/�2

exp� 2S

��2� −
��2

2�
, �17�

since limx→
 ��x ; p�=��p�. From this distribution it is only
possible to determine � and � up to the parameter function
�. The maximum likelihood estimator is

�̂ = t̄ =
1

n
�
i=1

n

ti. �18�

The asymptotic variance of the estimator estimated from the
inverted Fisher information evaluated at the optimum is
given by

var��̂� =
�̂2

n
. �19�

B. Suprathreshold regime

To derive the moment estimators, a closed expression for
E�eT/�� is deduced requiring ���S �suprathreshold�, and an
additional condition on � defined below provides a closed
expression for E�e2T/��, by defining suitable martingales and
applying Doob’s Optional-Stopping Theorem, in a similar
way as done in �26,44� for the OU neuronal model. In the
Appendix it is shown that

E�eT/�� =
�� − x0

�� − S
�20�

if ���S, and

E�e2T/�� =
��� − x0�2 + ��2���/2 − x0�
��� − S�2 + ��2���/2 − S�

, �21�

if

��2

2
�	1 +

2�

�2 − 1� � ��� − S� . �22�

The restrictions on the parameter space is illustrated in Fig. 2
as a function of k=2� /�2, k�1. If ���g�k�S then �22� is
fulfilled, where g�k�=k / �k+1−	k+1� is a strictly decreasing
function of k. If �→0 for fixed �, then k→
 and g�k�→1
�see Fig. 2�, and in this limit only the suprathreshold regime
is required. If k=1 the condition is ���g�1�S=S / �2−	2�.

Straightforward estimators of E�eT/�� and E�e2T/�� are ob-
tained from the empirical moments:

Z1 = Ê�eT/�� =
1

n
�
i=1

n

eti/�, �23�
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Z2 = Ê�e2T/�� =
1

n
�
i=1

n

e2ti/�. �24�

Moment estimators of the parameters, assuming that the data
are in the allowed parameter region, are then obtained from
Eqs. �20� and �21�

�̂ =
SZ1 − x0

��Z1 − 1�
�25�

and

�̂2 =
�S − x0�2�Z2 − Z1

2�
���Z1 − 1��SZ2 − x0� − �SZ1 − x0��Z2 − 1�/2�

. �26�

Note that the asymptotic depolarization will always be esti-
mated to be suprathreshold ��̂��S�. It follows from Eq. �25�
that �̂S /� if Z1Z1−1. In other words, if ti� for some i,
the data suggest that the model is not in the suprathreshold
regime. This shows the importance of the time constant for
determining the firing regimes.

IV. NUMERICAL RESULTS

Trajectories from the Feller process �5� in suprathreshold
regime were simulated according to the Milstein scheme �41�
with a stepsize of 0.01 msec for different input parameter
values. In all simulations the values �=10 msec, S=20 mV,

and x0=10 mV were used, which corresponds to the values
�y =10 msec, Sy =10 mV, y0=0 mV, and VI=−10 mV in the
untransformed process �4�. The process was run until reach-
ing a threshold S where the time was recorded. Three sets of
parameter values for � and � were considered. These param-
eter values are illustrated as points in Fig. 2. For each set of
parameter values 1000 data sets of 100 ISIs were generated,
and on each of them � and � were estimated. In Table I the
values used in the simulations and mean and standard devia-
tion of the 1000 estimates obtained for each parameter and in
each simulation are listed.

Normal quantile plots of the estimates are in Fig. 3. The
estimator of � appears non-biased, with small variance and
normally distributed, whereas the estimator of � underesti-
mates the correct value and is far from being normal, with a
heavy tail to the right.

V. DIFFUSION APPROXIMATION APPROACH

In this section we will show that the interpretation of the
parameters of the Feller process is not as straightforward as
in the OU model. The diffusion model �4� can be obtained
from the deterministic LIF model by adding a noise which-
restricts the state space from below. However, if we approach
the problem from the LIF model with reversal potentials and
discontinuous jumps, the conclusions are not as simple. The
discrete model is given by equation

dXt = −
Xt

�
+ a�VE − Xt�dPt + i�Xt − VI�dQt, �27�

where 1�a�0 and −1� i�0 are contributions of
excitatory and inhibitory postsynaptic potentials driven
by Poissonian inputs P and Q with intensities � and �, re-
spectively. The constant ��0 is the membrane time con-
stant, and VE�0 is the excitatory reversal potential. Under
conditions suitable for the diffusion approximation, namely
a→0, i→0, �→
, �→
, in such a way that �a→��0,
�i→��0, �a2→0, and �i2→�2, the limiting diffusion
process is

dYt = ��−
1

�
− � + ��Yt + �VE − �VI�dt + �	Yt − VIdWt,

�28�

which can be written in the form

FIG. 2. Part of parameter space where �20� and �21� are valid,
and thus where the estimators �25� and �26� are defined. The axes
are nondimensionalized. The vertical axis indicates the ratio be-
tween asymptotic mean and threshold, the horizontal axis indicates
the size of �2 relative to �. The points are the different values used
in the simulations.

TABLE I. Parameter values for � and � used in the simulations, and mean±standard deviation of the
1000 estimates �̂ and �̂ obtained for each combination of parameter values.

k �� mV

msec� ��	 mV

msec� �̂ �̂

1 4.5 3.0 4.34±0.47 1.98±0.45

2 4.0 2.0 3.92±0.33 1.45±0.27

6 3.0 1.0 2.98±0.17 0.71±0.10
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dYt = �−
1

�
Yt + ��dt + �	Yt − VIdWt, �29�

where �=� / �1+���−��� and �=�VE−�VI. This makes the
estimation procedure more complicated since � in Eq. �29� is
no longer an intrinsic parameter as in the OU process given
by Eq. �3�.

This approach has some consequences for the results
presented in the previous sections. It would be more
appropriate to estimate not only � and � in Eq. �5�, but
also the “membrane time constant” �, which now depends on
the input. It follows from Eq. �29� that ���, which
may have a substantial effect on the model behavior. The
smaller the value of �, the lower is the firing frequency.
Thus, an increase in � is, at least partly, compensated by a
decrease of “the membrane time constant.” This implies
that the firing rate would increase less steeply with
increasing excitation than in the OU model. Moreover, the
OU model has been criticized for a too narrow coding
range �range where firing frequency is above zero, but not
below some physiologically acceptable level�. From the
above considerations follows that inclusion of the reversal
potential not only has the desirable feature of restricting

the state-space, but also increases the coding range of the
neuron.

VI. DISCUSSION

The distribution of the FTP, T, through a constant bound-
ary by a Feller process has been the subject of many studies,
not only in neuronal modeling �45�. The distribution is prob-
ably unknown in analytical form. In this paper we propose
moment estimators of the input parameters, in dependency
on the sub-or suprathreshold conditions. Only the situation
where the intrinsic parameters are assumed to be known is
considered. The main contribution is the derivation of ex-
pressions for E�eT/�� and E�e2T/��. This leads to simple and
closed expressions for moment estimators of � and � in the
suprathreshold regime and when � is small relative to the
distance between the asymptotic depolarization and the
threshold. The results obtained from the simulated data show
that the proposed estimation procedure in the suprathreshold
regime works well for �. The variance parameter � is more
difficult. This is in agreement with the results obtained for
the OU model �26�. Moreover, approximations of E�T� and
var�T� from exact formulas were presented.

FIG. 3. Gaussian quantile plots
�empirical versus theoretical
quantiles� for the estimators �25�
and �26� from the 1000 artificial
data sets simulated with A: �
=4.5 mV/msec and �=3 mV/
msec, B: �=4 mV/msec and �
=2 	mV/	msec, and C: �
=3 mV/msec and �=1 mV/
msec. In all simulations �
=10 msec, S=20 mV, and x0

=10 mV. The horizontal lines
are set at the parameter values
used in the simulations.
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Considering the stochastic diffusion models, the literature
often makes reference to cortical neurons in vivo which are
characterized by irregular spike sequences and many synap-
tic inputs with relatively small individual contributions to the
membrane depolarization �15,18,19,46–49�. We have shown
that having one or more ISIs in a studied sample which is
several times longer that the membrane time constant, �,
implies that the neuronal firing cannot be described by
the Feller model in a suprathreshold regimen. The same
conclusion was drawn for the OU model �26�. We therefore
deduce that cortical neurons can be described by such a dif-
fusion model in the suprathreshold regime only for short
time periods.
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APPENDIX

Consider the Feller model for the membrane potential X at
time t

dXt = �−
Xt

�
+ ��dt + �	Xt dWt; X0 = x0, �A.1�

where ��0, 2���2, 0�x0�S, and S is the threshold value
of the stopping time

T = inf�t � 0:Xt � S� . �A.2�

We will now prove �20� and �21� using martingales, which
will be defined using the conditional moments from the
Feller process. In general, for a martingale Mt and a stopping
time T, we have E�MTÙt�=E�M0�. For a subcase the stronger
result holds �see �50�, p. 221�:

Doob’s Optional-Stopping Theorem. Let T be a stopping
time and let Mt be a uniformly integrable martingale. Then
E�MT�=E�M0�.

For t�s the conditional moments are

E��� − Xt
Xs� = ��� − Xs�e−�t−s�/� �A.3�

E���� − Xt�2
Xs� = ��� − Xs�2e−2�t−s�/� +
��2�2

2
�1 − e−�t−s�/��2

+ ��2Xs�1 − e−�t−s�/��e−�t−s�/�. �A.4�

Define the filtration Ft=��Xs ;0�s� t�, the sigma-algebra
generated by Xs for 0�s� t. Then the process

Mt
�1� = ��� − Xt�et/�, �A.5�

is a martingale with respect to Ft by �A.3�, and because
E�Mt

�1���
 since Xt follows a noncentral chi-square
distribution. Therefore MTÙt

�1� , the process Mt
�1� stopped at T,

is also a martingale �see �50�, p. 99�. Moreover, if ���S

then MTÙt
�1� is uniformly integrable. To show this it is enough

to show that 
MTÙt
�1� 
�Y for all t, for some non-negative

variable Y with E�Y��
 �see �50�, p. 128�. We have
E�M0

�1��=E�MTÙt
�1� � so that

��� − x0� = E���� − XTÙt�eTÙt/�� � ��� − S�E�eTÙt/�� .

�A.6�

When ���S the coefficient to E�eTÙt/�� is positive, and
�A.6� can be rearranged to

�� − x0

�� − S
� E�e�TÙt�/�� . �A.7�

Taking limits on both sides we obtain

�� − x0

�� − S
� lim

t→

E�eTÙt/�� = E�eT/�� �A.8�

by monotone convergence. The variable Y =��eT/� is
thus a non-negative variable with E�Y��
, and

MTÙt

�1� 
= ���−XTÙt�eTÙt/����eT/�=Y. Doob’s Optional-
Stopping Theorem can therefore be applied to MTÙt

�1� in su-
prathreshold regime yielding

�� = E�M0
�1�� = E�MT

�1�� = E���� − XT�eT/�� = ��� − S�E�eT/�� ,

�A.9�

which finally yields �20�. Now define

Mt
�2� = ��� − Xt�2e2t/� + ��2��� − Xt�e2t/� +

��2�2

2
�1 − e2t/��

�A.10�

which is a martingale with respect to Ft:
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E�Mt
�2�
Fs� = E�Mt

�2�
Xs� = E���� − Xt�2e2t/� + ��2��� − Xt�e2t/� +
��2�2

2
�1 − e2t/��
Xs�

= ��� − Xs�2e2s/� +
��2�2

2
�et/� − es/��2 + ��2Xs�et/� − es/��es/� + ��2��� − Xs�e�t+s�/� +

��2�2

2
�1 − e2t/��

= ��� − Xs�2e2s/� + ��2��� − Xs�e2s/� +
��2�2

2
�1 − e2s/��

= Ms
�2� �A.11�

using �A.4�, and that all moments of the noncentral chi-
square variable are finite, so that E�Mt

�2���
. Therefore

��� − x0�2 + ��2��� − x0�

= E�M0
�2�� = E�MTÙt

�2� �

= E���� − XTÙt�2e2TÙt/� + ��2���/2 − XTÙt�e2TÙt/�

+ ��2�2/2�

� ���� − S�2 + ��2���/2 − S��E�e2TÙt/�� +
��2�2

2
,

�A.12�

where we have used that ���−XTÙt�2� ���−S�2 when
���S. When

��2

2
�	1 +

2�

�2 − 1� � ��� − S� �A.13�

is fulfilled the coefficient to E�e2TÙt/�� is positive, and �A.12�
can be rearranged to

��� − x0�2 + ��2���/2 − x0�
��� − S�2 + ��2���/2 − S�

� E�e2�TÙt�/�� . �A.14�

Taking limits on both sides we obtain

��� − x0�2 + ��2���/2 − x0�
��� − S�2 + ��2���/2 − S�

� lim
t→


E�e2�TÙt�/�� = E�e2T/��

�A.15�

by monotone convergence. Taking Y = �����2

+��2�2 /2�e2T/�+��2�2 /2, which is non-negative, we obtain
the uniform integrability since 
MTÙt

�2� 
�Y and E�Y��
 if
condition �A.13� is fulfilled. Doob’s Optional-Stopping
Theorem can therefore be applied to MTÙt

�2� which finally
yields �21�.
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